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Assignment 1

Exercise 1.1

2. Which of the following operators are linear?

(a) L u = ux + xuy

(b) L u = ux + uuy

(c) L u = ux + u2y

(d) L u = ux + uy + 1

(e) L u =
√

1 + x2(cos y)ux + uyxy − [arctan(x/y)]u

3. For each of the following equations, state the order and whether it is nonlinear, linear inhomogeneous, or
linear homogeneous; provide reasons.

(a) ut − uxx + 1 = 0

(b) ut − uxx + xu = 0

(c) ut − uxxt + uux = 0

(d) utt − uxx + x2 = 0

(e) iut − uxx + u/x = 0

(f) ux(1 + u2x)−1/2 + uy(1 + u2y)
−1/2 = 0

(g) ux + eyuy = 0

(h) ut + uxxxx +
√

1 + u = 0

4. Show that the difference of two solutions of an inhomogeneous linear equation L u = g with the same g
is a solution of the homogeneous equation L u = 0.

11. Verify that u(x, y) = f(x)g(y) is a solution of the PDE uuxy = uxuy for all pairs of (differentiable)
functions f and g of one variable.

12. Verify by direct substitution that
un(x, y) = sinnx sinhny

is a solution of uxx + uyy = 0 for every n > 0.

Exercise 1.2

1. Solve the first-order equation 2ut + 3ux = 0 with the auxiliary condition u = sinx when t = 0.

2. Solve the equation 3uy + uxy = 0. (Hint: Let v = uy .)

3. Solve the equation (1 + x2)ux + uy = 0. Sketch some of the characteristic curves.

5. Solve the equation
√

1− x2ux + uy = 0 with the condition u(0, y) = y.

6. (a) Solve the equation yux + xuy = 0 with u(0, y) = e−y
2

.

(b) In which region of the xy plane is the solution uniquely determined?

7. Solve aux + buy + cu = 0.

8. Solve ux + uy + u = ex+2y with u(x, 0) = 0.
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9. Solve aux + buy = f(x, y), where f(x, y) is a given function. If a 6= 0, write the solution in the form

u(x, y) = (a2 + b2)−1/2
∫
L
fds + g(bx− ay),

where g is an arbitrary function of one variable, L is the characteristic line segment from the y axis to
the point (x, y), and the integral is a line integral. (Hint: Use the coordinate method.)

11. Use the coordinate method to solve the equation

ux + 2uy + (2x− y)u = 2x2 + 3xy − 2y2.

Exercise 1.3

1. Carefully derive the equation of a string in a medium in which the resistance is proportional to the velocity.

5. Derive the equation of one-dimensional diffusion in a medium that is moving along the x axis to the right
at constant speed V .

6. Consider heat flow in a long circular cylinder where the temperature depends only on t and on the distance
r to the axis of the cylinder. Here r =

√
x2 + y2 is the cylindrical coordinate. From the three-dimensional

heat equation derive the equation ut = k(urr + ur/r).

7. Solve Exercise 6 in a ball except that the temperature depends only on the spherical coordinate
√
x2 + y2 + z2.

Derive the equation ut = k(urr + 2ur/r).

9. This is an exercise on the divergence theorem∫∫∫
D

∇ · Fdx =

∫∫
bdyD

F · n

valid for any bounded domain D in space with boundary surface bdy D and unit outward normal vector
n. If you never learned it, see Section A.3. It is crucial that D be bounded. As an exercise, verify it in
the following case by calculating both sides separately: F = r2x, x = xi+ yj+ zk, r2 = x2 + y2 + z2, and
D =the ball of radius a and center at the origin.

10. If f(x) is continuous and |f(x)| ≤ 1/(|x|3 + 1) for all x, show that∫∫∫
all space

∇ · fdx = 0.

(Hint: Take D to be a large ball, apply the divergence theorem, and let its radius tend to infinity.)

Exercise 1.4

1. By trial and error, find a solution of the diffusion equation ut = uxxwith the initial condition u(x, 0) = x2.

2. (a) Show that the temperature of a metal rod, insulated at the end x = 0, satisfies the boundary condition
∂u/∂x = 0. (Use Fouriers law.)

(b) Do the same for the diffusion of gas along a tube that is closed off at the end x = 0. (Use Ficks law.)

(c) Showthat the three-dimensional version of (a) (insulated solid) or (b) (impermeable container) leads
to the boundary condition ∂u/∂n = 0.

3. A homogeneous body occupying the solid region D is completely insulated. Its initial temperature is f(x).
Find the steady-state temperature that it reaches after a long time. (Hint: No heat is gained or lost.)
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Exercise 1.5

1. Consider the problem
d2u

dx2
+ u = 0

u(0) = 0 and u(L) = 0

consisting of an ODE and a pair of boundary conditions. Clearly, the function u(x) ≡ 0 is a solution. Is
this solution unique, or not? Does the answer depend on L?

2. Consider the problem
u′′(x) + u′(x) = f(x)

u′(0) = u(0) =
1

2
[u′(l) + u(l)],

with f(x) a given function.

(a) Is the solution unique? Explain.

(b) Does a solution necessarily exist, or is there a condition that f(x) must satisfy for existence? Explain.

3. Solve the boundary problem u′′ = 0 for 0 < x < 1 with u′(0) + ku(0) = 0 and u′(1)± ku(1) = 0. Do the
+ and − cases separately. What is special about the case k = 2?

4. Consider the Neumann problem
∆u = f(x, y, z) in D

∂u

∂n
= 0 on bdy D

(a) What can we surely add to any solution to get another solution? So we dont have uniqueness.

(b) Use the divergence theorem and the PDE to show that∫∫∫
D

f(x, y, z)dx dy dz = 0

is a necessary condition for the Neumann problem to have a solution.

(c) Can you give a physical interpretation of part (a) and/or (b) for either heat flow or diffusion?

Exercise 1.6

1. What is the type of each of the following equations?

(a) uxx − uxy + 2uy + uyy − 3uyx + 4u = 0.

(b) 9uxx + 6uxy + uyy + ux = 0.

2. Find the regions in the xy plane where the equation

(1 + x)uxx + 2xyuxy − y2uyy = 0

is elliptic, hyperbolic, or parabolic. Sketch them.

3. Among all the equations of the form (1), show that the only ones that are unchanged under all rotations
(rotationally invariant) have the form a(uxx + uyy) + bu = 0.
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4. What is the type of the equation
uxx − 4uxy + 4uyy = 0?

Show by direct substitution that u(x, y) = f(y + 2x) + xg(y + 2x) is a solution for arbitrary functions f
and g.

5. Reduce the elliptic equation
uxx + 3uyy − 2ux + 24uy + 5u = 0

to the form vxx + vyy + cv = 0 by a change of dependent variable u = veαx+βy and then a change of scale
y′ = γy.

6. Consider the equation 3uy + uxy = 0.

(a) What is its type?

(b) Find the general solution. (Hint: Substitute v = uy.)

(c) With the auxiliary conditions u(x, 0) = e−3x and uy(x, 0) = 0, does a solution exist? Is it unique?
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Suggested Solution to Assignment 1

Exercise 1.1

2. By the definition of linearity for operators in 1.1(3), the operators in (a) and (e) are linear, others are not
linear. �

3. (a) order 2 with uxx, linear inhomogeneous; (b) order 2 with uxx, linear homogeneous; (c) order 3 with uxxt,
nonlinear; (d) order 2 with with utt, uxx, linear inhomogeneous; (e) order 2 with uxx, linear homogeneous;
(f) order 1 with ux and uy, nonlinear; (g) order 1 with ux and uy, linear homogeneous; (h) order 4 with
uxxxx, nonlinear. �

4. Suppose that L u1 = g and L u2 = g and let u = u1 − u2, then L u = L u1 −L u2 = g − g = 0, where
the operator L is linear. �

11. Let u(x, y) = f(x)g(y), then by direct calculation we have

u(x, y)uxy(x, y) = f(x)g(y)f ′(x)g′(y)

= f ′(x)g(y)f(x)g′(y)

= ux(x, y)uy(x, y)

Hence, uuxy = uxuy is verified. �

12. Let un(x, y) = sinnx sinhny, then for n > 0,

uxx + uyy = −n2 sin(nx) sinh(ny) + n2 sin(nx) sinh(ny) = 0.

Thus, uxx + uyy = 0 is verified. �

Exercise 1.2

1. Using the characteristic curve method or the coordinate method, we have u(t, x) = f(3t−2x). �. Setting
t = 0 yields the equation f(−2x) = sinx. Letting w = −2x yields f(w) = − sin(w/2). Therefore,
u(t, x) = sin(x− 3t/2). �

2. Let v = uy, then 3v + vx = 0. Thus we have v(x, y) = f(y)e−3x, i.e., uy(x, y) = f(y)e−3x, which implies
u(x, y) = F (y)e−3x + g(x), where both F and g are arbitrary (differentiable) functions. �

3. The characteristic curves satisfy the ODE: dy/dx = 1/(1 + x2), which implies y = arctanx + C. Thus
u(x, y) = f(y − arctanx). We omit the easy figure here. �

5. The characteristic curves satisfy the ODE: dy/dx = 1/
√

1− x2, which implies y = arcsinx + C. Thus
u(x, y) = f(y − arcsinx). Setting x = 0 yields the equation f(y) = y, and then u(x, y) = y − arcsinx. �

6. (a)The characteristic curves satisfy the ODE: dy/dx = x/y, which implies y2 = x2 +C and then u(x, y) =
f(y2 − x2). Setting x = 0 yields the equation f(y2) = e−y

2
. Letting w = y2 yields f(w) = e−w and

u(x, y) = ex
2−y2 . (b)Please see the following figure. �

7. Change variables to x′ = ax+ by, y′ = bx− ay. By the chain rule,

ux = aux′ + buy′ , uy = bux′ − auy′

. We have (a2 + b2)ux′ + cu = 0 which implies u(x, y) = f(y)e−cx/(a
2+b2) and then u(x, y) = f(bx −

ay)e−c(ax+by)/(a
2+b2), where f is a arbitrary (differentiable) function. �

1



MATH 4220 (2015-16) partial diferential equations CUHK

8. Note that u(x, y) = ex+2y/4 is a special solution of te inhomogeneous equation, and by the result of 1.2.8
above, the general solution of the corresponding homogeneous equation is f(x − y)e−(x+y)/2. Thus the
general solution of ux + uy + u = ex+2y is

u(x, y) = f(x− y)e−(x+y)/2 + ex+2y/4,

where f is a arbitrary function. Let y = 0, and then we have f(x)e−x/2 + ex/4 = 0, i.e. f(x) = −e3x/2/4.
So the solution is u(x, y) = (ex+2y − ex−2y)/4. �

9. By changing variables,x′ = ax+ by, y′ = bx−ay. The original equation is equivalent to the following form

(a2 + b2)ux′ = f(
ax′ + by′

a2 + b2
,
bx′ − ay′

a2 + b2
).

Therefore, we have the general solution to the above equation is

u(x′, y′) =
1

a2 + b2

∫ x′

0
f(
as′ + by′

a2 + b2
,
bs′ − ay′

a2 + b2
) ds′ + g(y′),

where we let g(y′) = u(0, y′), and g is a arbitrary function. Returning back to the original parameters,
the integral changes to be the integral along the line

L = {(m,n); 0 ≤ s′ = am+ bn ≤ ax+ by, y′ = bm− an = bx− ay}.

When denoting s the parameter of arc length, we have ds =
√

(dm)2 + (dn)2. Note that along the line

L the condition bm − an = bx − ay is satisfied. Thus, b(dm) − a(dn) = 0, and then ds =
√
a2+b2

a dm,

ds′ = a(dm) + b(dn) = a2+b2

a . Hence, the solution is

u(x, y) =
1

(a2 + b2)1/2

∫
L
fds+ g(bx− ay),

where L is shown above(actually, the line segment is not from the y axis). �

11. Using Coordinate Method, we change variables x′ = x + 2y, y′ = 2x − y, then the original equation is
changed into

5ux′ + y′u = x′y′.

Note that u(x′, y′) = x′ − 5
y′ is a special solution and u(x′, y′) = f(y′)e−(x

′y′/5) is the general solution of
the corresponding homogeneous equation. Hence the general solution of original equation is

u(x, y) = f(2x− y)e−
(x+2y)(2x−y)

5 + x+ 2y − 5

2x− y
where f is an arbitrary (differentiable) function. �
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Exercise 1.3

1. According to Example 2, we only need to add the resistence in the transverse equation. Under the
assumption that the resistence is proportional to the velocity, the transverse equation becomes

Tux√
1 + u2x

∣∣∣x1
x0

+

∫ x1

x0

−kutdx =

∫ x1

x0

ρuttdx

where k > 0 is a coefficient depending on the property of the medium (e.g. the density of the medium).
Note that the direction of resistence should be opposite to the velocity, thus we have the negative sign
before k. The equation, differentiated, says that

(Tux)x − kut = ρutt

That is,
utt − c2uxx + rut = 0

where c =
√

T
ρ , r = k

ρ > 0.

5. Let u(x, t) be the concentration (mass per unit length) of the dye at position x of the pipe at time t. The
mass of dye is M(t) =

∫ x
x0
u(y, t)dy, so ∂M

∂t =
∫ x
x0
ut(y, t)dy. Then by the Fick’s law,

∂M

∂t
= flow in− flow out = V (u(x0, t)− u(x, t)) + kux(x, t)− kux(x0, t).

Differentiating with respect to x, we get ut = kuxx − V ux. �

6. Since the heat flow depends only on t and on the distance r =
√
x2 + y2 to the axis of the cylinder,

u(x, y, z, t) = u(
√
x2 + y2, t) = u(r, t).

Then by the chain rule,

ux = urx/r, uy = ury/r, uz = 0,

uxx = urrx
2/r2 + ur(r

2 − x2)/r3, uyy = urry
2/r2 + ur(r

2 − y2)/r3, uzz = 0.

Therefore, ut = k(uxx + uyy + uzz) = k(urr + ur/r). �

7. Since the heat flow depends only on t and on the distance r =
√
x2 + y2 + z2 to the cylinder,

u(x, y, z, t) = u(
√
x2 + y2 + z2, t) = u(r, t).

Then by the chain rule,

ux = urx/r, uy = ury/r, uz = urz/r,

uxx =
urrx

2

r2
+
ur(r

2 − x2)
r3

, uyy =
urry

2

r2
+
ur(r

2 − y2)
r3

, uzz =
urrz

2

r2
+
ur(r

2 − z2)
r3

.

Therefore, ut = k(uxx + uyy + uzz) = k(urr + 2ur/r). �

9. Denote F = (F1, F2, F3). Note that ∂F1
∂x = r2 + 2x2. Thus, we have∫∫∫

D

∇ · Fdx =

∫ a

0

∫∫
∂B(0,r)

∇ · F dSdr =

∫ a

0

∫∫
∂B(0,r)

5r2 dSdr = 4π

∫ a

0
5r4dr = 4πa5,

∫∫
bdyD

F · ndS = 4πa2 a3 = 4πa5,

where ∂B(0, r) denotes the ball of radius r centered at O. �
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10. By the divergence theorem, we have∫∫∫
|x|≤R

∇ · fdx =

∫∫
|x|=R

f · ndS ≤
∫∫
|x|=R

|f |dS ≤
∫∫
|x|=R

1/|x|3dS = 4π/R.

Hence, ∫∫∫
all space

∇ · fdx = lim
R→∞

∫∫∫
|x|≤R

∇ · fdx ≤ lim
R→∞

4π/R = 0. �

Exercise 1.4

1. Setting u(x, t) = f(t)+x2 yields the equations f(t) = 2 and f(0) = 0. Hence, f(t) = 2t and u(x, t) = 2t+x2

is a solution of the diffusion equation. �

2. (a) No heat flows across the boundary, by the Fouriers law, we have ∂u/∂x = 0;

(b) No gas flows across the boundary, by the Ficks law, we have ∂u/∂x = 0;

(c) No heat or gas flows across the boundary, by the Fouriers or Ficks law, we have ∂u/∂n = 0. �

3. After long time, if this homogeneous body reaches a steady state, then ∂tu = 0, therefore, uxx = 0. Since

it is insulated, therefore, we have u ≡ constant. So the steady-state temperature is

∫
D fdx∫
D dx

. �

Exercise 1.5

1. The general solution of the ODE: d
2u
dx2

+u = 0 is u(x) = C1 cosx+C2 sinx. Hence, to satisfy the boundary
conditions,

C1 = 0 and C1 cos(L) + C2 sin(L) = 0.

Therefore, C1 = 0 and C2 sin(L) = 0. So the solution u ≡ 0 if and only if L is not an integer multiple of
π. �

2. (a) The solution is not unique. Indeed, if there exists a solution u0, then u0+C(e−x−2) is also a solution
of equation for any constant C.

(b) The solution does not necessarily exist, since the condition that f(x) must satisfy for the existence
is: ∫ l

0
f(x)dx =

∫ l

0
[u′′(x) + u′(x)] dx = [u′(l) + u(l)]− [u′(0) + u(0)] = 0. �

3. The general solution of u′′(x) = 0 is u(x) = ax+ b, where a and b are constants. Hence, when we do the
+ case, a and b have to satisfy a + kb = 0 and a + k(a + b) = 0, and then solution(s) of the boundary
problem would be

u(x) =

{
0 if k 6= 0

b if k = 0
;

when we do the − case, the solution(s) of the boundary problem would be

u(x) =


0 if k 6= 0, 2

b if k = 0

− 2bx+ b if k = 2

.

If k = 2, the boundary problem is unique for the + case, but not for the − case. �
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4. (a) Adding a constant C to a solution will give another solution, so we do not have uniqueness if there
is a solution;

(b) Integrating f(x, y, z) on D and using the divergence theorem, we obtain∫∫∫
D

f(x, y, z)dxdydz =

∫∫∫
D

∆udxdydz =

∫∫∫
D

∇ · ∇udxdydz =

∫∫
∂D

∇u · ndS = 0

(c) For heat flow or diffusion, u is a physical quantity in terms of time t. The equation here can only
describe the derivatives of u with respect to (x, y, z). So (a) shows that u up to a constant has the
same derivatives with respect to (x, y, z).
Since for heat flow and diffusion ut = k∆u = kf(x, y, z), (b) shows that to satisfy the boundary
condition(insulated solid or impermeable container), the change of the whole heat energy or the whole

substance with respect to time, which is proportion to
∫∫∫
D

∂u

∂t
dxdydz = k

∫∫∫
D

f(x, y, z)dxdydz, has

to be 0. �

Exercise 1.6

1. Indeed, we check the sign of the “discriminant” D = a212 − a11a22.

(a) D = [(−1− 3)/2]2 − 1 · 1 = 3 > 0, so it is hyperbolic.

(b) D = [6/2]2 − 9 · 1 = 0, so it is parabolic. �

2. Indeed, its discriminant is

D = (xy)2 − (1 + x)(−y2) = (x2 + x+ 1)y2 = [(x+ 1/2)2 + 3/4]y2,

So it is hyperbolic in {y 6= 0}, parabolic on {y = 0}, and elliptic nowhere. We omit the easy figure here.
�

3. In the equations of the form (1), suppose A = (aij), n = (ai) and b = a0. Denote B = (bij) as the matrix
of the rotation. Therefore, the new variables (ξ, η) satisfy (ξ, η)T = B(x, y)T , and the new coefficients
satisfy A′ = BABT , n′ = nBT and b′ = b. So the rotationally invariant equations have to satisfy

A = BABT , n′ = nBT ∀ normal matrix B.

Thus, A is a unit matrix multiple of a constant a, and n = 0. So all rotationally invariant equations of
the form (1) have the form a(uxx + uyy) + bu = 0. �

4. It is parabolic since its discriminant D = (−4/2)2−1·4 = 0. By direct subtitution, if u(x+y) = f(y+2x)+
xg(y+2x), then uxx = 4f ′′(y+2x)+4xg′′(y+2x)+4g′(y+2x), uxy = 2f ′′(y+2x)+2xg′′(y+2x)+g′(y+2x)
and uyy = f ′′(y + 2x) + xg′′(y + 2x), and then the equation is satisfied. �

5. Let u = ve(αx+βy), then

ux = (vx + αv)e(αx+βy) uy = (vy + βv)e(αx+βy)

uxx = (vxx + 2αvx + α2v)e(αx+βy) uyy = (vyy + 2βvy + β2v)e(αx+βy)

Hence, by direct substituting,

(vxx + 2αvx + α2v) + 3(vyy + 2βvy + β2v)− 2(vx + αv) + 24(vy + βv) + 5v = 0,

vxx + 3vyy + (2α− 2)vx + (6β + 24)vy + (α2 + 3β2 − 2α+ 24β + 5)v = 0.

Let α = 1 and β = −4, the equation turns out to be vxx+3vyy−44v = 0. By setting x′ = x and y′ =
√

3y,
the equation turns out to be vx′x′ + vy′y′ − 44v = 0. �
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6. (a) It is hyperbolic since its discriminant D = (1/2)2 > 0;

(b) Set v = uy, we have 3v+vx = 0 which implies v(x, y) = f(y)e−3x and thus u(x, y) = F (y)e−3x+g(x),
where F, g are arbitrary (differential) functions.

(c) Setting y = 0 yields

e−3x = u(x, 0) = F (0)e−3x + g(x)

0 = uy(x, 0) = F ′(0)e−3x.

Therefore,
u(x, y) = (F (y) + 1− F (0))e−3x,

where F (y) satisfy F ′(0) = 0. By setting F (y) = ny2, n = 1, 2, · · · , we obtain infinitely many
solutions u(x, y) = (ny2 + 1)e−3x of the problem. �
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